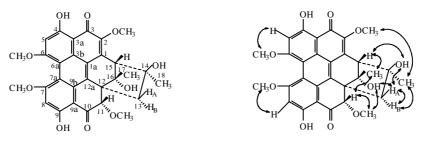
## A New Perylenequinone from *Hypomyces* sp.

## Wei Zhong LIU<sup>1</sup>\*, Yun Xiu SHEN<sup>1</sup>, Xiang Feng LIU<sup>1</sup>, Yuan Teng CHEN<sup>2</sup>, Jin Lun XIE<sup>2</sup>


<sup>1</sup>Chemistry Teaching and Research Department, Binzhou Medical College, Binzhou 256603 <sup>2</sup>Fermentation Engineering Key Laboratory, Yunnan University, Kunming 650091

**Abstract:** A new perylenequinone, named hypomycin A, was isolated from the mycelia of *Hypomyces* sp.. Its structure was elucidated on the basis of spectroscopic methods.

Keywords: Hypomyces sp., perylenequinone, hypomycin A.

Some metabolites of fungi and plants containing perylenequinones have been used as folk medicine for the treatment of many diseases<sup>1,2</sup>. A filamentous fungus, Ascomy-cetes Hypocreaceae *Hypomyces* (Fr.) Tul. sp., was found from the northwestern mountains of Yunnan Province, and cultured successfully in the laboratory. A new perylenequinone, named hypomycin A (1), was isolated from its mycelia. In this paper the structure elucidation of 1 was described.

Figure 1 The structure of compound 1 Figure 2 The key correlations of 1 in the NOESY



Compound **1**, red crystals, mp 166~169°C (EtOH);  $[\alpha]_{D}^{2s}$  +350.6 (c, 0.15, CHCl<sub>3</sub>). The FAB-MS spectrum showed a  $[M+1]^+$  ion peak at m/z 549. Its molecular formula,  $C_{30}H_{28}O_{10}$ , was established by FAB-MS, <sup>1</sup>H and <sup>13</sup>C NMR (**Table 1**) spectroscopy. The IR absorptions at 3422, 1624 and 1583 cm<sup>-1</sup> indicated the presence of hydroxy and hydrogen-bonded extended quinone carbonyl groups. The UV-vis spectrum  $\lambda_{max}^{MeOH}$  nm (lg  $\varepsilon$ ) 212 (4.45), 286 (4.52), 395 (4.23), 416 (4.31), 495 (3.89) and 527 (3.92), was similar to those of elsinochromes<sup>3</sup> and other perylene-quinones<sup>4</sup>, but hypsochromic obviously. Furthermore, compound **1** showed a remarkable upfield shift of one phenyl hydroxy ( $\delta$  12.71), a downfield shift of one quinone carbonyl group ( $\delta$  197.2), and only

the  $\delta$  values of 18 carbons were more than 99 (common perylenequinones<sup>5</sup> at least 20 carbons). So compound **1** was a perylenequinone whose one carbonyl group lacked a conjugated double bond.

In the HMBC experiment, the correlations of H-11 with C-10, C-12, C-12a, C-13 and C-16,  $H_A$  and  $H_B$ -13 with C-12 and C-12a, H-15 with C-1, C-1a, C-2, C-12 and C-16, and H-17 with C-12, C-15 and C-16, indicated C-16 and C-13 connected with C-12, C-15 with C-1, and C-16 with C-15. In addition, the correlations of H-18 with C-13, C-14 and C-15, and H-15 with C-13 and C-14, showed that C-14 connected with C-15 and C-13. Together with other correlations, the basic structure of **1** was established. All proton and carbon data were assigned on the basis of the HMQC and HMBC spectra.

The relative stereochemistry of **1** was deduced by the NOESY (**Figure 2**) experiment. If  $H_A$ -13 were in  $\beta$ -configuration, the correlations of  $H_A$ -13 with 16-OH, H-11 with H-17, and  $H_B$ -13 with H-18 revealed that H-11 and 17-CH<sub>3</sub> were in  $\beta$ - configuration, and 18-CH<sub>3</sub> was in  $\alpha$ -configuration. Thus, the structure of **1** was determined.

|    | $^{1}\mathrm{H}$ | <sup>13</sup> C |     | $^{1}\mathrm{H}$             | <sup>13</sup> C |                     | $^{1}\mathrm{H}$ | <sup>13</sup> C |
|----|------------------|-----------------|-----|------------------------------|-----------------|---------------------|------------------|-----------------|
| 1  |                  | 135.9s          | 8   | 6.76(s)                      | 100.3d          | 16                  |                  | 85.8s           |
| 1a |                  | 121.8s          | 9   |                              | 165.4s          | 17                  | 1.26(s)          | 20.8q           |
| 2  |                  | 149.6s          | 9a  |                              | 102.4s          | 18                  | 0.88(s)          | 26.6q           |
| 3  |                  | 181.2s          | 9b  |                              | 127.3s          | $2-OCH_3$           | 4.13(s)          | 60.9q           |
| 3a |                  | 106.7s          | 10  |                              | 197.2s          | 6-OCH <sub>3</sub>  | 4.10(s)          | 56.3q           |
| 3b |                  | 124.6s          | 11  | 4.56(s)                      | 81.1d           | 7-OCH <sub>3</sub>  | 4.08(s)          | 56.2q           |
| 4  |                  | 169.9s          | 12  |                              | 55.4s           | 11-OCH <sub>3</sub> | 3.92(s)          | 60.6q           |
| 5  | 6.77(s)          | 99.5d           | 12a |                              | 139.6s          | 14-OH               | 4.83(s)          |                 |
| 6  |                  | 164.5s          | 13  | H <sub>A</sub> 2.94(d, 13.5) | 46.3t           | 16-OH               | 5.60(s)          |                 |
| 6a |                  | 112.1s          |     | H <sub>B</sub> 1.84(d, 13.5) |                 | 4-OH                | 15.19(s)         |                 |
| 7  |                  | 164.1s          | 14  |                              | 80.5s           | 9-OH                | 12.71(s)         |                 |
| 7a |                  | 115.4s          | 15  | 3.85(s)                      | 58.2d           |                     |                  |                 |

**Table 1** The <sup>1</sup>H and <sup>13</sup>C NMR data of compound **1** (500MHz,  $\delta$  ppm, CDCl<sub>3</sub>, TMS)

## References

- 1. L. J. Jiang, Science Bulletin, 1990, 35 (21), 1680.
- 2. X. W. Zhu, Foreign Medical Sciences, Section of Plants Medicine, 1998, 13 (5), 210.
- 3. R. J. J. Ch. Lousberg, C, A. Salemink, U. Weiss, et al., J. Chem. Soc. (c), 1969, 1220.
- 4. X. Y. Wan, Y. T. Chen, Science Bulletin, 1980, 25 (24), 1148.
- 5. Kishi, S. Tahara, N. Takahashi, et al., Planta Med., 1991, 57, 376.

Received 12 October, 2000